Piecewise linear models for the quasiperiodic transition to chaos.
نویسندگان
چکیده
We formulate and study analytically and computationally two families of piecewise linear degree one circle maps. These families offer the rare advantage of being non-trivial but essentially solvable models for the phenomenon of mode locking and the quasiperiodic transition to chaos. For instance, for these families, we obtain complete solutions to several questions still largely unanswered for families of smooth circle maps. Our main results describe (1) the sets of maps in these families having some prescribed rotation interval; (2) the boundaries between zero and positive topological entropy and between zero length and non-zero length rotation interval; and (3) the structure and bifurcations of the attractors in one of these families. We discuss the interpretation of these maps as low-order spline approximations to the classic "sine-circle" map and examine more generally the implications of our results for the case of smooth circle maps. We also mention a possible connection to recent experiments on models of a driven Josephson junction. (c) 1996 American Institute of Physics.
منابع مشابه
Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation.
Numerical studies of higher-dimensional piecewise-smooth systems have recently shown how a torus can arise from a periodic cycle through a special type of border-collision bifurcation. The present article investigates this new route to quasiperiodicity in the two-dimensional piecewise-linear normal form map. We have obtained the chart of the dynamical modes for this map and showed that border-c...
متن کاملPresentation of quasi-linear piecewise selected models simultaneously with designing of bump-less optimal robust controller for nonlinear vibration control of composite plates
The idea of using quasi-linear piecewise models has been established on the decomposition of complicated nonlinear systems, simultaneously designing with local controllers. Since the proper performance and the final system close loop stability are vital in multi-model controllers designing, the main problem in multi-model controllers is the number of the local models and their position not payi...
متن کاملTransition to High-Dimensional Chaos through quasiperiodic Motion
In this contribution we report on a transition to high-dimensional chaos through three-frequency quasiperiodic behavior. The resulting chaotic attractor has a one positive and two null Lyapunov exponents. The transition occurs at the point at which two symmetry related threedimensional tori merge in a crisis-like bifurcation. The route can be summarized as: 2D torus → 3D torus→ high-dimensional...
متن کاملDynamics of Piecewise Linear Discontinuous Maps
In this paper, the dynamics of maps representing classes of controlled sampled systems with backlash are examined. First, a bilinear one-dimensional map is considered, and the analysis shows that, depending on the value of the control parameter, all orbits originating in an attractive set are either periodic or dense on the attractor. Moreover, the dense orbits have sensitive dependence on init...
متن کاملLocal and Global bifurcations in Three-Dimensional, Continuous, Piecewise Smooth Maps
In this work, we study the dynamics of a three-dimensional, continuous, piecewise smooth map. Much of the nontrivial dynamics of this map occur when its fixed point or periodic orbit hits the switching manifold resulting in the so-called border collision bifurcation. We study the local and global bifurcation phenomena resulting from such borderline collisions. The conditions for the occurrence ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Chaos
دوره 6 2 شماره
صفحات -
تاریخ انتشار 1996